
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Action recognition by saliency-based dense sampling

Zengmin Xua,b,c, Ruimin Hua,b,⁎, Jun Chenb,d, Chen Chene, Huafeng Chenb, Hongyang Lib,
Qingquan Sunf

a State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
b National Engineering Research Center for Multimedia Software, School of Computer, Wuhan University, Wuhan 430072, China
c School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of
Electronic Technology, Guilin 541004, China
d Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, Wuhan 430072, China
e Center for Research in Computer Vision, University of Central Florida, Orlando, FL 32816, USA
f School of Computer Science and Engineering, California State University San Bernardino, San Bernardino, CA 92407, USA

A R T I C L E I N F O

Keywords:
Region-based Contrast Boundary
Warped flow evaluation
Robust salient mask
Trajectory-pooled Deep-convolutional
Descriptor(TDD)

A B S T R A C T

Action recognition, aiming to automatically classify actions from a series of observations, has attracted more
attention in the computer vision community. The state-of-the-art action recognition methods utilize dense
sampled trajectories to build feature representations. However, their performances are limited due to action
region clutters and camera motions in real world applications. No matter how the scenario changes in different
backgrounds, the salient cues of actions are highly dependent on their appearances and motions. Based on this
discovery, in this paper we propose a novel saliency-based dense sampling strategy named improved dense
trajectories (iDT) on salient region-based contrast boundary (iDT-RCB). Without any external human detector,
a robust mask is generated to overcome the limitations of global contrast based saliency in action sequences.
Warped optical flow is exploited to adjust the interest points sampling to remove subtle motions. We show that
an appropriate pruning of feature points can achieve a good balance between saliency and density of the
sampled points. Experiments conducted on three benchmark datasets have demonstrated the effectiveness of
the proposed method. More specifically, the fusion of deep-learned features and our hand-crafted features can
even improve the recognition performance over baseline dense sampling methods. In particular, the fusion
scheme achieves the state-of-the-art accuracy at 73.8% and 94.8% on Hollywood2 and UCF50, respectively.

1. Introduction

Human action recognition, one of the key technologies in computer
vision domain, has been widely applied in human surveillance, scene
understanding, human–computer interaction, etc. While reliable hu-
man action recognition has been achieved in simple scenes (KTH [1]
and Weizmann [2]), the recognition task remains challenging in
complex scenes. The diversity of realistic videos, such as movies [3]
and web videos [4–6], has shown significant challenges with fore-
ground clutter, background variations, camera motion, view changes
and partial occlusions.

Human action modeling is a fundamental problem for action
recognition. Modeling an action in video sequence starts with feature
representation. Previous research efforts for action representation were
mainly focused on the following four aspects:

• Local features: For each given detected interest point, a feature

descriptor is computed for a 3D video patch descriptor. As local
space–time features allow to build efficient action representation
without object detection or motion segmentation, they have been
successfully utilized in action recognition and thus, leads to a trend
of generalizing descriptors such as STIP [7], Cuboids [8], 3D-SIFT
[9], HOG3D [10], HOG/HOF [3], Hierarchical SIFT Trajectory [11],
LTP [12], MoSIFT [13], MPEG Flow [14], and CGME [15], iMoSIFT
[16].

• Dense sampling: Among the local space–time features, dense
sampling methods have drawn more attention and provided pro-
mising results. The main idea is to densely sample feature points in
each frame, and track them in video sequences based on optical flow.
Multiple descriptors are computed along the trajectories of feature
points to capture motion information, e.g., MBH [17], extended
SURF [18], Dense [19], V-FAST [20], Stacked ISA [21], Saliency
[22], OVDS [23], DT [24], LPM [25], DCS [26], MBI [27],
Motionlets [28], iDT [29], DTD [30], Concept Relevance [31,32],
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and iDT-RCB [33].

• Global representation: Despite encouraging results have been
obtained using the methods above on several datasets, low-level
features limit the semantics of actions. Therefore, representing
actions by pose-based methods [34–39] or global templates have
been explored, for instance, MHI [40], Shapes [2], Action Bank [41],
NTraj [42] and DMMs [43]. However, it is difficult to estimate poses
or high quality templates due to the diversity of real world videos,
except in special cases (e.g., puppet [42], simple scenes [2,34,37,40],
accelerometers [39], and depth camera and inertial sensor [44–46]).

• Deep learning: As hand-crafted descriptors mentioned above may
lack discriminative capacity for action representation, deep learning
methods aim to automatically learn the semantic representation
from raw video by using a deep neural network. Typical methods
include 3D ConvNets [47], Deep ConvNets [48], Two-Stream
ConvNet [49], TDD [50], Latent Concept Descriptors [51], H-FCN
[52], FCLN [53] and Conv Two-Stream [54].

1.1. Motivation and contributions

As shown in the last two rows of Fig. 1, complex human body poses,
partial occlusions and motion blurs often appear in action videos, the
human detector [29] and faster RCNN [55] do not always work
perfectly. These components may lead to incorrect region detection
problem when estimating the homography with feature matching. To
automatically detect action regions without expensive training data and
any human detector, motivated by saliency detection research
[22,29,56,57], a global contrast based segmentation algorithm was
introduced to produce region-based contrast maps (RC-map).

Although RC-maps can constrain feature points on salient regions,
the global contrast based segmentation algorithm, which uses image
contrast under the assumption that a salient object exists in an image,
was not suitable for action videos. Because it may result in unstable
masks with respect to consecutive frames. Therefore, partly inspired by
motion boundary researches [17,27], we applied morphological gra-

dient to optimize RC-maps to generate more robust masks. It is named
region-based boundary maps (RCB-map). The RCB-maps could cap-
ture discriminative appearance information on salient region bound-
aries.

However, action recognition becomes a challenging problem due to
the motions of camera and the variations in pose, appearance, back-
ground, etc. It should be noted that action recognition cannot be
achieved by merely employing an object detection or segmentation
algorithm. As Fig. 1 shows, there are numerous irrelevance trajectories
in real world videos due to camera motion. Hence, the action
representation is prone to be inaccurate. Meanwhile, merely using
improved dense sampling on RCB-maps (iDT-rawRCB) also cannot
promote the recognition, as RCB-maps may not be able to capture the
relative displacements while resisting background motions in a subset
of consecutive frames.

To address the above problem, traditional motion estimation
approaches model the global camera motions by using motion vector
decomposition [58,59], or warp optical flow with a robustly estimated
homography [5,29]. In this paper we assume that the true flow can be
established by a normalized warped optical flow at each point of
consecutive frames, and then a normalized magnitude of warped flow
was defined to capture salient relative displacements, while the tiny
ones lower than a threshold are regarded as meaningless. Since
recognition task always benefit from dense features but sparse [60],
we should replace feature points with those points sampled by original
iDT after excluding minimum warped flow, when the sampled ratio
becomes relative small.

The proposed method including iDT on RCB-map and warped flow
pruning with dense feature supplementary scheme is named iDT-RCB.
We extensively evaluate our method on Hollywood2 dataset. Inspired
by the deep learning approaches [49,50,54], we also evaluate the fusion
methods combining Convolutional Neural Network (CNN) architec-
tures with our iDT-RCB. The fusion of them achieves the state-of-the-
art performance on Hollywood2 and UCF50 datasets. The contribu-
tions of this paper are summarized as follows:

Fig. 1. Example illustrating the characteristics in action videos, e.g., background motions and foreground variations. The 1st row shows white removed trajectories under various
camera motions. The 2nd row illustrates camera motion types via red underlying trajectories. The 3rd row demonstrates the failure cases of human detector due to complex human pose
variations. The last row describes the failure cases of faster RCNN owe to illumination variations and partial occlusions. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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• We propose a salient region-based dense sampling method to
conquer the region detection and motion evaluation problem.
Different from the previous dense sampling methods [22,27,29]
on pruning features, our method mines the saliency of distant
regions from consecutive frames without automatic human detec-
tion.

• We evaluate the effectiveness of removing tiny motions from warped
optical flow. When pruning tiny motions by a suitable magnitude
threshold, the remainder of warped flow are regarded as salient
motions between frames. In other words, the action recognition can
benefit from salient region masks and salient motion displacements.

• We exploit information not only for the hand-crafted features but
also for the fusion of deep-learned features. We separately present
the results of iDT-RCB and our best results obtained with early
fusion of TDD and iDT-RCB.

A preliminary version of this work appeared in [33]. This paper
extends the earlier work [33] as follows. Firstly, we reveal the motion
cues between salient displacements and warped optical flow through
analysis and experiments. It demonstrates that our method can benefit
from salient region boundaries (i.e., RCB-maps) and salient warped
flow. Secondly, we propose a dense supplementary scheme to overcome
the problem of extremely sparse features, when RCB-maps fail to
capture enough features in some cases. Experimental results show that
a suitable pruning of feature points represents good compromise
between saliency and density of the sampled points. Thirdly, we
comprehensively compare our method with state-of-the-art ap-
proaches. Extensive experiments on Hollywood2 dataset are also
conducted. By combining CNN features with our method, the recogni-
tion results are further improved.

The remainder of this paper is organized as follows. In Section 2, a
brief review of related work on dense sampling for action recognition is
given. In Section 4, we describe the reason of region-based contrast
boundary mapping. Then, we evaluate the influence of removing tiny
motions according to warped optical flow, and provide a dense feature
supplementary scheme in Section 5. Section 6 shows experimental
results and finally Section 7 concludes this paper.

2. Related work

In this section we give a brief review of the related work on dense
sampling. Current dense sampling researches can be generally categor-
ized into two classes: saliency based and dense based approaches.

The saliency based approaches pay attention to seeking out a proper
salient mask, which is a crucial aspect in feature points selection
procedure. Dalal et al. [17] studied a descriptor using motion boundary
based coding to capture shape, appearance and motion information.
Willems et al. [18] proposed dense and scale-invariant spatio-temporal
interest point, which is a spatiotemporal extension of the Hessian
saliency measure. Vig et al. [22] applied saliency-mapping algorithms

to prune background features. This results in a more compact video
representation, and improves action recognition accuracy. Jain et al.
[26] decomposed visual motion into dominant and residual motions,
and designed a new descriptor to capture additional information on the
local motion patterns. Ballas et al. [56] identified prominent regions in
videos content through motion, illumination and cornerness saliencies,
and introduced a new space–time invariant pooling scheme. Peng et al.
[27] constrained the sampled points on large magnitude regions of
motion boundary image in the sampling step. Mathe et al. [61] pruned
background features based on visual saliency. Li et al. [62] applied
multiple instance learning on top of dense trajectory features in order
to learn mid-level action to better represent human actions. However,
it is obviously inappropriate to merely employ a uniform algorithm for
action representation, which has been discussed in Section 1.

The dense based approaches aim to capture more tiny body motion
that can easily separate different actions in various videos. Wang et al.
[24] tried to sample feature points on dense grid in each frame, and
tracked them based on dense optical flow. Jiang et al. [63] clustered
dense trajectories, and utilized the cluster centers as reference points
so that the relationship between them can be modeled. Wang et al. [23]
densely sampled video patches with the optimizing position and scale
parameters to guarantee that the features are shift and scale invariant.
Shi et al. [25] explored sampling over high density with local spatio-
temporal features extracted from a Local Part Model. Peng et al. [64]
stacked two FV encoding layers via a hierarchical structure, and
described a max-margin dimensionality reduction algorithm to com-
press densely sampled subvolumes. Simonyan et al. [49] built a Two-
Stream ConvNet architecture which incorporates spatial and temporal
networks. Wang et al. [50] presented a trajectory-pooled deep con-
volutional descriptor, which shares the merits of both hand-crafted
features and deep-learned features. Nevertheless, constructing deep-
learning features leads to high computational complexity problem. On
the other hand, the hand-crafted feature can also be complementary to
CNN. For example, by combining the simple local features (e.g, iDT
[29]) and deep CNN features (e.g., Two-Stream ConvNet [49]), Wang
et al. [50] could promote the recognition result on HMDB51 from
63.2% to 65.9%. So in this paper, we focus the hand-crafted feature in
the traditional methods.

There are still few methods trying to refine the multi-class problem
by active learning or semi-supervised learning. Yang et al. [65]
proposed a semi-supervised batch mode multi-class active learning
algorithm for visual concept recognition. Recently, semi-supervised
learning [66–68] also have been proposed. However, the effectiveness
of these methods is highly depending on the batch sizes or fine-tuned
parameters with respect to a different dataset. Therefore, this kind of
methods is beyond the scope of this paper.

3. Improved dense trajectories revisited

As shown in Fig. 2, our proposed method (iDT-RCB) is based on

Fig. 2. Comparison of proposed approach (iDT-RCB) with traditional approach (iDT) for action recognition. Points sampled by iDT-RCB are more effective than iDT, because action
regions have been detected by saliency-mapping of region-based contrast boundary and salient warped optical flow. Green trajectories indicate that the sampled points have been tracked
for fixed length of frames. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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low level trajectory extraction and we choose improved dense trajec-
tories [29]. In this section, we briefly review the extraction process of
improved dense trajectories. We use improved dense trajectories due to
its good performance.

Improved dense trajectories are extended from dense trajectories
[24]. To compute dense trajectories, the first step is to densely sample a
set of points on 8 spatial scales on a grid with step size of 5 pixels.
Points in homogeneous areas are eliminated by setting a threshold for
the smaller eigenvalue of their autocorrelation matrices. Then these
sampled points are tracked by median filtering of dense flow field

P x y x y M ω= ( , ) = ( , ) + ( * )| ,t t t t t t x y+1 +1 +1 ( , )t t (1)

where a point P x y= ( , )t t t is given in frame It, its tracked position in
frame It+1 is smoothed by applying a median filter kernel M on ωt. For
each frame It, its dense optical flow field ωt is computed with respect to
the next frame It+1.

To avoid the drifting problem of tracking, the sampled points are
tracked for 15 frames. Then they are removed and replaced by new
feature points. Those static trajectories and others with suddenly large
displacement are both ignored, since they are incorrect due to
inaccurate optical flow.

The iDT approach boosts the recognition performance of dense
trajectory by explicit camera motion estimation. The iDT approach first
finds the correspondence between two consecutive frames. According
to the SURF feature matching and optical flow based matching, they
use the RANSAC algorithm to estimate the homography matrix. Then,
they warp the second frame with the estimated homography and re-
compute dense optical flow, called warped flow. Warped flow brings
advantages to the descriptors calculated from optical flows, in parti-
cular for HOF and MBH.

We adopt many steps of the iDT sampling method and make a
modification as described in Algorithm 1. Different from the iDT, we
constrain feature points with RCB-map and salient warped flow instead
of human detector. We observe that tracking those points is effective
for action representation. In summary, given a video V, we obtain a set
of points Prcb(V) after applying RCB-map and salient warped flow,
while a set of points Pmin(V) is also obtained merely employing salient
warped flow. When the sampled ratio is lower than a threshold, it
means that the set of points Prcb(V) may have too few features to
represent an action, thus we will automatically replace Prcb(V) with
Pmin(V). Tracking these points for consecutive frames resulting in a set
of trajectories Tr(V).

4. Region-based contrast boundary sampling

In this section, we introduce a global contrast based salient region
detection algorithm [57] in feature points sampling step. We also
explain why this algorithm does not perform well in action videos, then
we present our new sampling strategy on salient region boundary in
detail.

4.1. Global contrast based salient region sampling

Although the iDT can benefit from the camera motion compensa-
tion, the performance of action recognition still suffers from the
inevitable movements of cameras. The truth is that most of the
challenging action datasets contain lots of camera motions. For
example, HMDB51 has 59.9% videos including camera motion [5].
Hence, we should study how to capture salient appearance in con-
secutive frames.

To highlight the salient regions for action representation, we take
into account the human detection algorithm. Unfortunately, even the
state of the art human detector cannot work well on action video
datasets [29]. Furthermore, the salient region may be not in human
body area but other objects like the oars are more attractive in rowing
action, see the 4th column of Fig. 3(a). Hence, in order to find out the

attractive salient regions, we follow [27] to create the mask named
Motion Boundary Image (MBI). But improved dense trajectories on
motion boundary images (iDT-MB) are not stable, since the motion
boundaries are significantly influenced by the threshold value on
gradient variation of optical flow. See the 2nd column of Fig. 3(d), it
shows the effective sampling example, but fails to capture the mean-
ingful ones in Fig. 3(b) due to the unstable performance of MBI
threading. A worse result is given in the 2nd column of Fig. 3(c), almost
nothing is left in some cases.

Motivated by saliency detection research [22,29,56,57], we intro-
duce a contrast based segmentation algorithm to produce region-based
contrast maps. This improved dense trajectory on region-based con-
trast maps (iDT-RC) is partly inspired by Global Contrast based Salient
Region Detection [57]. The main idea of iDT-RC is to automatically
estimate salient object regions across every frame and enhance iDT
sampling method without any prior knowledge of the video content.
The iDT-RC sampling includes three steps:

(1) We first use a graph-based image segmentation method [57] to cut
every frame into regions, and build the color histogram for each
region. For a region rk, we assign its saliency value by measuring
its color contrast to other regions:

∑S r w r D r r( ) = ( ) ( , ),k
r r

i r k i
≠k i (2)

where w r( )i is the weight of region defined by the number of pixels
in ri, and D r r( , )r k i is the color distance metric between regions rk
and ri.

(2) We further incorporate spatial information by introducing a spatial
weighting term in Eq. (2) to increase the effects of closer regions
and decrease the effects of farther regions. Specifically, for any
region rk, the spatially weighted region contrast based saliency is

⎛
⎝⎜

⎞
⎠⎟∑S r D r r

σ
w r D r r( ) = exp − ( , ) ( ) ( , ),k

r r

s k i

s
i r k i

≠
2

k i (3)

where D r r( , )s k i is the spatial distance between the two regions and
σs controls the strength of spatial distance weighting.

(3) To save the useful feature points in every frame, we follow the RC-
map [57] approach to obtain a segmentation mask, and apply the
estimated salient mask to iDT sampling method. Those feature
points sampled by the iDT-RC but not in global contrast based
salient regions will be deleted.

4.2. Optimization with salient region boundary

However, the iDT-RC combined iDT with salient regions straightly
does not perform well in points sampling. Several reasons may account
for this issue: Firstly, the Global Contrast based Salient Region
Detection, which uses image contrast under the assumption that a
salient object exists in an image, aims to model saliency for image
pixels using color statistics of the input image. Hence, the RC-map
approach does not always work perfectly, it will obtain some unex-
pected masks due to its global color contrast, see the 3rd column of
Fig. 3(c). Secondly, sometimes the salient region generated by RC-map
is too limited to track enough feature points for representing an action,
the discriminative ones may be not saved, see the 3rd column of
Fig. 3(a). Last but not the least, not all the appearance regions are valid
to represent actions of people.

Therefore, in order to handle the above issues, we try to sample
improved dense trajectories on raw region-based contrast boundary
(iDT-rawRCB). Unlike [22,23,25,26], our iDT-rawRCB sampling strat-
egy constrains the sampled points on salient region boundaries in the
sampling step. We use three iterations of the morphological gradient on
RC-map to generate a robust RCB-map. The morphological gradient
can be expressed as
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RCBmap morph RCmap dilate RCmap erode RCmap= ( ) = ( ) − ( ),grad (4)

5. Warped optical flow evaluation

This section gives a brief evaluation of removing tiny motions from
warped optical flow. A dense supplementary scheme is provided for
better feature space distribution. We also detail our new sampling

strategy based on salient region boundary and salient warped flow.

5.1. Salient motions evaluation

As trajectories generated by camera motion can be removed by
warped flow [29], it is reasonable to assume that the true flow can be
modeled by a normalized warped optical flow at each point of

Fig. 3. Visualization of iDT, iDT-MB, iDT-RC, iDT-rawRCB and iDT-RCB sampling strategies for 4 actions. Compared to iDT, iDT-MB can reduce irrelevant motions, but it is not stable.
iDT-RC can handle salient regions, but it cannot capture the salient boundaries accurately. Although iDT-rawRCB merely employing RCB-maps is robust to salient regions, particular at
shot boundaries, the iDT-RCB can benefit from salient appearance cues (i.e., RCB-maps) and salient motion cues (i.e., warped flow), as shown in (a)–(c). The last two rows demonstrate
the failure case of RCB-map due to global contrast variations, resulting in no facial expressions on shot boundaries by iDT-rawRCB. To conquer the above issue, a dense supplementary
scheme is applied to iDT-RCB. The RCB-maps are replaced by warped flow for saliency-mapping, when feature points are too few to capture informative motions, as described in (d).
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consecutive frames. For performance measures of optical flow, Baker
et al. [69] extended the sum-of-squared-difference (SSD) to compute
frame interpolation. Inspired by his work, we define a normalized
magnitude of warped optical flow

⎡
⎣⎢

⎤
⎦⎥i

u v ε
( ) = ( ) + ( )

max (∥ ( , )∥ ) +
,i

u
i
v

i I i
ω

2 2

∀ ∈
2

1
2

(5)

where i
u and i

v stands for each point i of image I containing the u
(horizontal) and v (vertical) components of optical flow, respectively,

= ( , )i
ω

i
u

i
v stands for the 2D flow image u v( , )ω at point i. In our

experiments ε = 1.0 (grey-levels per pixel squared).
We illustrate the difference between the original and corrected

optical flow in the middle two columns of Fig. 5. The original optical
flow field contain lots of inaccurate motion vectors due to camera
motions. We follow [29] to warp optical flow resulting in stabilized
motion vectors. We not only compute the maximal magnitude of the
motion vectors during its length of each trajectory as demonstrated in
[29], but also compute the maximal normalized magnitude using Eq.
(5). If the normalized magnitude of i( ) is lower than a threshold, the
displacement at point i is considered to be consistent with camera
motion, and thus removed.

Although most of the motions in human body areas have been
removed when a threshold of 0.4 is set, salient motions still benefit
from a suitable threshold like 0.001, see the 3rd column of Fig. 5.
Hence, we can sample improve dense trajectories merely excluding
minimum warped flow (iDT-min). This gives us similar effects as
sampling features based on visual saliency maps [22,27,61].

5.2. Dense feature supplementary scheme

In this subsection, we validate the proposed approach and describe
the importance of denseness for the contribution of salient warped
flow.

Influence of T: To reduce the impact of tiny motions, we set a
threshold T in this stage. When T → 0, it is equal to only apply the iDT
method; inversely, fewer points are sampled to generate result for
T → 1. We change T from 1E−6 to 0.4, the corresponding results are

shown in Fig. 6. It is obvious that 0.01 is a good choice for on the
HMDB51 dataset.

However, recognition task always benefit from dense features but
sparse [60]. Since iDT-min has pruned tiny motions, merely applying
RCB masks on iDT-min sampling will lead to much fewer trajectories,
and then result in performance degradation. Hence, we propose a
dense feature supplementary scheme. When the sampled ratio is less
than a threshold, we will automatically replace points Prcb sampled by
iDT-RCB with points Pmin sampled by iDT-min. The sampled ratio is
defined as num P num P( )/ ( )rcb min , under the current scale of each frame. In
this paper we set the threshold of sampled ratio as 0.5 empirically.

We conduct experiments for evaluating the effectiveness of iDT-
RCB with dense supplementary scheme. Fortunately, iDT-RCB has
derived benefit from salient motions and dense features, as was
expected in Fig. 6.

5.3. Summary of iDT-RCB sampling

In our approach, we follow [29] to initialize the sampling para-
meters, such as trajectory length, spatial scale, spatial cells, temporal
cells, eigenvalues threshold, etc. These parameters are set the same as
iDT [29]. This initialization will not affect the sampling results (i.e., the
number of sampled points). But the iDT-RCB sampling results will be
affected by RCB-maps. This is because the SaliencyCut [51] using
graphcut and GMM mode leads to iterative process, there may be a
slight difference in generalized results of RC-map. Although the RCB-
map produced by RC-map is not very stable, the discriminative power
from salient region boundary still remained. All recognition results on
three datasets are better than iDT with Human Detector, as we can see
in Table 1. Nevertheless, the final recognition results may be affected
by a trained codebook (e.g., GMM) from randomly selected trajectories.

The proposed iDT-RCB sampling is described below in detail. Note
that there are three differences between iDT-RCB and iDT sampling
[29]. Firstly, we add step 3 for generating RCB-map. Secondly, we add
steps 10 and 11 for evaluating warped optical flow. Thirdly, we modify
steps 4 and 6 for replacing Human Detector with RCB-map.

Algorithm 1. iDT-RCB sampling procedure.

Fig. 4. RCB-map using morphological gradient is more robust than RC-map and MBI for salient region segmentation in action videos, see the 4th column. Note that iDT-rawRCB
merely apply the RCB-map, whereas iDT-RCB combine RCB-map with salient warped optical flow, and dense supplementary scheme.

Fig. 5. Examples of removing tiny motions via threshold magnitude of warped optical flow. While setting threshold value to 0.001 can preserve plenty of tiny motions, valid human body
motions may be pruned by a value of 0.4.
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Input:
VideoFrames I I I= { , , …, }N1 2 ;

Output:
ValidTrajectories Tr Tr Tr= , , …, M1 2 ;

1: Initialize the sampling parameters
2: for i=1 to N do
3: generate the RCB map− by using three iterations of Eq. (4)
4: P denseSample greyI RCB map⇐ ( , − )j i

(1) for each scale.

Tr P⇐j j
(1) (1)

5: ω ⇐i compute dense optical flow by Farnebäck algorithm
6: matches matchFromSurfandFlow greyI ω RCB map⇐ ( , , − )i i i

7: H findHomography matches matches RANSAC⇐ ( , , )i i i−1

8: warp the second frame with Hi

9: ω ′⇐i re-compute dense optical flow by warped second frame
10: remove Pj

(1) when P T( ) <j
(1) according to Eq. (5)

11: replace Prcb with Pmin if sampled ratio <0.5
12: predict the motion of Pj

t( +1) by using ω ′i
13: Tr P P P P P⇐ { , , …, , , …, }j j j j

t
j
t

j
L(1) (2) ( ) ( +1) ( )

14: if Trj is valid & & Trj is not camera motion then
15: ValidTrajectories Tr⇐ j

16: end if
17: end for

where Pj
(1) denote the first position of the j-th sampled point. Points

from Pj
(1) to Pj

L( ) of subsequent L frames are concatenated into the j-th
trajectory Trj.

We hold that those points on the salient region boundary are the
most discriminative ones. This is indeed partly implied by MBH
descriptor [17], Dmask including narrow strip surrounding the persons
contour [42], and motion boundary contour system in neural dynamics
of motion perception [70].

Although many action recognition approaches have been developed
and inspiring progresses can achieve advanced levels, our iDT-RCB
sampling method is more effective for large camera motion. It is very
suitable for feature extraction in action videos, see the 5th column of
Fig. 4.

6. Experiments

In this section, we describe the details of extensive experiments to
evaluate the effectiveness of the proposed method in action recogni-
tion.

6.1. Datasets

We conduct experiments on three action datasets, namely
Hollywood2 [3], HMDB51 [5] and UCF50 [6]. Some example frames
are illustrated in Fig. 7. We summarize them and the experimental
protocols as follows.

The Hollywood2 dataset has been collected from 69 different
Hollywood movies and includes 12 action classes. It contains 1707
videos split into a training set (823 videos) and a test set (884 videos).
Training and test videos come from different movies. The performance
is measured by mean average precision (mAP) over all classes.

The HMDB51 dataset is collected from a variety of sources ranging
from digitized movies to YouTube videos. There are 51 action
categories and 6766 video sequences in HMDB51. We follow the

Fig. 6. Comparative results of different T on HMDB51 datasets. Note that iDT-min and
iDT-RCB stands for different T on iDT and iDT-rawRCB, respectively.

Table 1
Comparison of our results (HOG+HOF+MBH) to the state of the art. We present our
results for FV encoding without automatic human detection (HD).

Hollywood2 HMDB51 UCF50

Jain et al. [26] 62.5% Simonyan et al.
[49]

59.4% Reddy et al. [6] 76.9%

Ni et al. [74] 66.7% Wang et al. [50] 65.9% Shi et al. [25] 83.3%
Hoai et al. [73] 72.7% Feichtenhofer

et al. [54]
69.2% Wang et al. [72] 85.7%

Lan et al. [75] 68.0% Lan et al. [75] 65.4% Lan et al. [75] 94.4%
iDT without HD

[29]
63.0% iDT without HD

[29]
55.9% iDT without

HD [29]
90.5%

iDT with HD
[29]

64.3% iDT with HD
[29]

57.2% iDT with HD
[29]

91.2%

iDT-MB 61.9% iDT-MB 53.3% iDT-MB 88.4%
iDT-RC 62.7% iDT-RC 55.7% iDT-RC 90.8%
iDT-rawRCB 64.3% iDT-rawRCB 57.8% iDT-rawRCB 91.3%
iDT-RCB 65.2% iDT-RCB 58.9% iDT-RCB 92.0%
TDD[50]+iDT-

RCB
73.8% TDD[50]+iDT-

RCB
66.4% TDD[50]+iDT-

RCB
94.8%

Fig. 7. Example frames from (a) Hollywood2, (b) HMDB51 and (c) UCF50.
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original protocol using three train–test splits and perform experiments
on the original videos not the stabilized ones. We report average
accuracy over the three splits as performance measure.

The UCF50 dataset has 50 action categories, consisting of real-
world videos taken from YouTube. The actions range from general
sports to daily life exercises. For all 50 categories, the videos are split
into 25 groups. For each group, there are at least 4 action clips. In total,
there are 6618 video clips in UCF50. We apply the Leave-One-Group-
Out Cross Validation for UCF50 dataset and report average accuracy
over the twenty five splits.

6.2. Experimental setup

In the following experiments, we densely extract improved trajec-
tories based on the code [29]. The iDT-MB is implemented by the code
[27]. The iDT-RC and iDT-RCB is partly implemented by the code
[29,57].

To recognize actions, we evaluate the presented sampling methods
at the same server cluster with multithreading, and follow [29,64] to
train a GMM codebook with K=256 Gaussians based on 256,000
randomly sampled trajectories. The default parameters of descriptor in
the spatio-temporal grid, the size of the volume and the tracked frames
length are the same as [29]. Each trajectory is described by concatenat-
ing HOG, HOF, and MBH descriptors, which is a 396-dimensional
vector. We reduce the descriptors dimension to 200 by performing PCA
Whitening and L2-normalization. Then, each video is represented by a
2DK dimensional Fisher vector for each descriptor type. Finally, we
apply Power L2-normalization to the Fisher vector. To combine
different descriptor types, we concatenate their normalized Fisher
vectors. In our experiments, we choose linear SVM as our classifier
with the implementation of LIBSVM [71]. For multi-class classifica-
tion, we use the one-vs-rest approach and select the class with the
highest score.

We compare our methods with recent works
[6,25,26,29,50,49,54,72–75]. The mean run-time of sampling process
and the mean number of sampled trajectories are compared with iDT.
The processing speed is reported in frames per second (fps), run at a
single-core Intel Xeon X3430 (2.4 GHz) without multithreading.

6.3. Combining with convolutional neural network

In this experiment we also evaluate the effect of combining CNN
features which are encoded by trajectory-pooled deep-convolutional
descriptor [50]. To reduce the influence of illumination, we use the
combined representation obtained from spatiotemporal normalization
and channel normalization for TDDs. To keep the dimensionality
manageable, we fix the dimension D=64 reduced by PCA. Then, we

train a GMM with K=256 Gaussians, and finally the video is repre-
sented with a 2DK dimensional vector. This is exactly the same setup
used by Wang et al. [50]. However, combining ConvNets with high
performance is not the final goal of this paper, and we aim to verify the
effectiveness of iDT-RCB. Hence, we combine trajectory features like
iDT-RCB with CNN features obtained by the code of TDD[50], using
early fusion of Fisher vector representation.

6.4. Results and analysis

Since the SaliencyCut [57] is an iterative process of using graphcut
and GMM appearance mode, there may be a slight difference in
generalized results. However, its performance still improves, as salient
region boundaries are much clearer, see the 4th column of Fig. 3.
Furthermore, the influence of removing tiny motions from warped
optical flow is evaluated. We also provide a dense feature supplemen-
tary scheme to remain the denseness of feature distribution.

On all the datasets we used, the proposed method achieves
comparable performance with respect to traditional iDT. To further
investigate the effects of RCB masks on traditional iDT, we illustrate
the split1 recognition results of all the action classes from HMDB51
dataset in Fig. 8.

We also compare our method with the recent results reported in
Table 1. The iDT without HD combining with FV encoding [29] is taken
as baseline, the accuracy of iDT-RCB on Hollywood2, HMDB51 and
UCF50 is improved by 2.2%, 3% and 1.5%, respectively. Our iDT-RCB
implementation achieves the best result on UCF50, while the result on
HMDB51 is slightly decreased than [49], which have used the trained
deep Convolutional Networks.

As indicated by Table 1, when combining with MBI, the iDT-MB
approach gets worse results on these datasets. One probable reason for
this degradation is that they use improper mask for sampling, whereas
the iDT-RC also miss many discriminative trajectories due to unstable
mask, as it is shown in Fig. 4.

For verifying the effectiveness of our methods, we combine CNN
features (e.g., TDD) with iDT-RCB. As frame based features improve
from CNN, the fusion of them can further boost the performance. This
further improvement indicates that our iDT-RCB are complementary to
those deep-learned features. The recognition results are shown in
Table 1, an interesting comparison is against the Conv Two-Stream
[54], which employs VGG-16 for both streams with fusion by 3D Conv
and 3D Pooling. Although the convolutional layers of TDD are fewer
than Conv Two-Stream [54], our results on three datasets still under-
line the importance of our proposed method. Meanwhile, our results on
Hollywood2 and UCF50 obtain the state-of-the-art performance.

Evaluation results of sampling strategy are presented in Table 2. We
report the average number of trajectories per video clip and the fps

Fig. 8. The split1 results of all the action categories from HMDB51 dataset.
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within 10 videos randomly selected from each dataset. The trajectories
reduction does not reduce the accuracy. Indeed, a limited reduction
and efficient selection tend to improve the accuracy with minor
computational cost, as we can see from the last row of Table 2.
Taking into account the subsequent recognition procedure, fewer
trajectories also lead to faster video encoding process.

7. Conclusion

This paper proposes a novel dense sampling approach without
human detection. We introduce a salient region contrast based
segmentation method in feature points sampling step. To overcome
the flaws of salient region contrast based method in action videos, we
apply morphological gradient to RC-map for generating more robust
salient mask. This improved sampling method constrains sampled
points on the salient region boundary which can improve the perfor-
mance with minor computational cost. The comparisons of the
sampling strategies demonstrate that salient region boundary informa-
tion is more effective. We also evaluate the salient motions by setting
minimum threshold of warped optical flow. Experimental results
describe that a suitable threshold (depending on model) represents a
good compromise between salient motions and feature denseness.
Finally, our method improves the recognition on three benchmark
datasets, the fusion of CNN features and our iDT-RCB can achieve the
state-of-the-art performance on Hollywood2 and UCF50.
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